
The DALI Logic Programming Agent-Oriented
Language�

Stefania Costantini and Arianna Tocchio

Università degli Studi di L’Aquila
Dipartimento di Informatica

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost,tocchio}@di.univaq.it

1 The DALI language

DALI [3] [2] is an Active Logic Programming Language designed in the line of [6] for
executable specification of logical agents. A DALI agent is a logic program that contains
a particular kind of rules, reactive rules, aimed at interacting with an external environ-
ment. The reactive and proactive behavior of a DALI agent is triggered by several kinds
of events: external, internal, present and past events. All the events and actions are times-
tamped, so as to record when they occurred. The new syntactic entities, i.e., predicates
related to events and proactivity, are indicated with special postfixes (which are coped
with by a pre-processor) so as to be immediately recognized while looking at a program.

The external events are syntactically indicated by the postfix E. When an event comes
into the agent from its “external world”, the agent can perceive it and decide to react.
The reaction is defined by a reactive rule which has in its head that external event. The
special token :>, used instead of : −, indicates that reactive rules performs forward
reasoning. The agent remembers to have reacted by converting the external event into a
past event (time-stamped). Operationally, if an incoming external event is recognized,
i.e., corresponds to the head of a reactive rule, it is added into a list called EV and
consumed according to the arrival order, unless priorities are specified.

The internal events define a kind of “individuality” of a DALI agent, making her
proactive independently of the environment, of the user and of the other agents, and
allowing her to manipulate and revise her knowledge. An internal event is syntactically
indicated by the postfix I, and its description is composed of two rules. The first one
contains the conditions (knowledge, past events, procedures, etc.) that must be true so
that the reaction (in the second rule) may happen.

Internal events are automatically attempted with a default frequency customizable
by means of directives in the initialization file. The user directives can tune several
parameters: at which frequency the agent must attempt the internal events; how many
times an agent must react to the internal event (forever, once, twice,. . . ) and when
(forever, when triggering conditions occur, . . . ); how long the event must be attempted
(until some time, until some terminating conditions, forever).

� We acknowledge support by the Information Society Technologies programme of the European
Commission, Future and Emerging Technologies under the IST-2001-37004 WASP project.

J.J. Alferes and J. Leite (Eds.): JELIA 2004, LNAI 3229, pp. 685–688, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



686 S. Costantini and A. Tocchio

When an agent perceives an event from the “external world”, it does not necessarily
react to it immediately: she has the possibility of reasoning about the event, before (or
instead of) triggering a reaction. Reasoning also allows a proactive behavior. In this
situation, the event is called present event and is indicated by the suffix N.

Actions are the agent’s way of affecting her environment, possibly in reaction to an
external or internal event. In DALI, actions (indicated with postfix A) may have or not
preconditions: in the former case, the actions are defined by actions rules, in the latter
case they are just action atoms.An action rule is just a plain rule, but in order to emphasize
that it is related to an action, we have introduced the new token :<, thus adopting the
syntax action :< preconditions. Similarly to external and internal events, actions are
recorded as past actions.

Past events represent the agent’s “memory”, that makes her capable to perform
future activities while having experience of previous events, and of her own previous
conclusions. Past events, indicated by the suffix P, are kept for a certain default amount of
time, that can be modified by the user through a suitable directive in the initialization file.

The DALI language has been equipped with a communication architecture consisting
of three levels. The first level implements a FIPA-compliant [5] communication protocol
and a filter on communication, i.e. a set of rules that decide whether or not to receive
or send a message. The DALI communication filter is specified by means of meta-
level rules defining the distinguished predicates tell and told. The second level includes
a meta-reasoning layer, that tries to understand message contents, possibly based on
ontologies and/or on forms of commonsense reasoning. The third level consists of the
DALI interpreter.

The declarative and procedural semantics of DALI, is defined as an evolutionary
semantics, so as to cope with the evolution of an agent corresponding to the perception
of events [3]. The semantics has been generalized so as to include the communication
architecture by resorting to the general framework RCL (Reflective Computational
Logic) [1] based on the concept of reflection principle.

Following [7] and the references therein, the operational semantics of communication
is defined [4] by means of a formal dialogue game framework that focuses on the rules
of dialogue, regardless the meaning the agent may place on the locutions uttered. This
means, we do not want to refer to the mental states of the participants.

2 The DALI Interpreter

The DALI interpreter has been implemented in Sicstus Prolog, and includes a FIPA-
compliant communication library. The DALI interpreter is in principle able to interop-
erate with other FIPA-compliant platforms. Presently, we have implemented interoper-
ability with JADE, which is one of the best-known non-logical middleware for agents
(namely, it is written in java). DALI agents can be distributed on the web, as the imple-
mentation of the communication primitives is based on TCP/IP.

The interpreter is composed of three main modules: (i) the DALI active server mod-
ule, that manages the community of DALI agents; (ii) the DALI active user module,
that provides a user interface for the user to interact with the agents; (iii) the active dali



The DALI Logic Programming Agent-Oriented Language 687

module, that is automatically activated by the active server whenever an agent is created
(then, there are as many copies of the active dali module running as the existing agents).

The DALI/FIPA communication protocol consists of the main FIPA primitives, plus
few new primitives which are peculiar of DALI. The code implementing the FIPA primi-
tives is contained in the file communication fipa.txt, imported by agents as a library. The
DALI/FIPA communication protocol is implemented by means a piece of DALI code
including suitable tell/told rules. Whenever a message is received, with content part
primitive(Content,Sender) the DALI interpreter automatically looks for a corresponding
told rule that specifies whether the message should be accepted. Symmetrically, when-
ever a message should be sent, with content part primitive(Content,Sender) the DALI
interpreter automatically looks for a corresponding tell rule that specifies whether the
message can be actually issued. The DALI code defining the DALI/FIPA protocol is con-
tained in a separate predefined file, communication.txt, imported by agents as a library.
In this way, both the communication primitives and the communication protocol can be
seen as “input parameters ”of the agent. It is important to notice that the file communi-
cation.txt can modified by the user by adding new rules to the default ones. Typically,
a user will add new application-dependent tell/told rules to the file communication.txt.
Possibly however, both library files can be replaced by different ones, thus specifying a
different communication protocol.

Each DALI agent must be generated by specifying the following parameters. (a)
The name of the file that contains the DALI logic program (a .txt file). (b) The name of
the agent. (c) The ontology the agent adopts (a .txt file); (d) The language (e.g., Italian
or English etc.) used in the communication acts; (e) The name of the file containing
the communication constraints, a .txt file; as mentioned, a predefined standard version
communication.txt is provided. (f) The name of the communication library, a .txt file;
as mentioned, a standard version communication fipa.txt is provided. (g) The skills that
the agent means to make explicit to the community of DALI agents (e.g., profession,
hobbies, etc.). Below is an example of activation of an agent.

agent(’demo/program/prog’,gino,’demo/pippo ontology.txt’,italian,
[’demo/communication’],[’demo/communication fipa’],[tourist]).

From the program file, say prog.txt, a pre-processing stage extracts three files. (1)
The file prog.ple, that contains a list of the special tokens occurring in the agent pro-
gram, denoting internal and external events, goals, actions, etc. (2) The file prog.plf,
that contains a list of user-defined directives, that the DALI environment provides for
tuning the behavior of an agent: the user can decide for instance: the priority among
events; how long to keep memory of past events, and/or upon which conditions they
must be removed; the starting and terminating conditions for attempting internal events,
and the frequency. (3) The file prog.pl which contains the code of the agent; it must be
noticed that all variables are reified, so as to guarantee safe communication and reliable
meta-reasoning capabilities.

3 Case Studies

We are able of course to show many simple examples, aimed at illustrating the basic
language features. More complex case studies can however be demonstrated.



688 S. Costantini and A. Tocchio

To demonstrate the usefulness of the “internal event” and “goal” mechanisms, we
have considered as a case-study the implementation of STRIPS-like planning. We can
show that it is possible in DALI to design and implement this kind of planning with-
out defining a meta-interpreter. Rather, each feasible action is managed by the agent’s
proactive behavior: the agent checks whether there is a goal requiring that action, sets
up the possible subgoals, waits for the preconditions to be verified, performs the actions
(or records the actions to be done if the plan is to be executed later), and finally arranges
the postconditions.

We can generalize this example to dynamic planning, where an agent is able to
recover from unwanted or unexpected situations by suitably modifying its plan.

To explain how the filter level works, we have implemented and experimented a
case-study that demonstrates how this filter is powerful enough to express sophisticated
concepts such as expressing and updating the level of trust. Trust is a kind of social
knowledge and encodes evaluations about which agents can be taken as reliable sources
of information or services. We focus on a practical issues: namely, how the level of Trust
influences communication and choices of the agents.

References

1. J. Barklund, S. Costantini, P. Dell’Acqua e G. A. Lanzarone, Reflection Principles in
Computational Logic, Journal of Logic and Computation, Vol. 10, N. 6, December 2000,
Oxford University Press, UK.

2. S. Costantini. Many references about DALI and PowerPoint presentations
can be found at the URLs:
http://costantini.di.univaq.it/pubbls stefi.htm and
http://costantini.di.univaq.it/AI2.htm.

3. S. Costantini and A. Tocchio, A Logic Programming Language for Multi-agent Systems,
In S. Flesca, S. Greco, N. Leone, G. Ianni (eds.), Logics in Artificial Intelligence, Proc. of
the 8th Europ. Conf., JELIA 2002, (held in Cosenza, Italy, September 2002), LNAI 2424,
Springer-Verlag, Berlin, 2002.

4. S. Costantini, A. Tocchio and A. Verticchio, Semantic of the DALI Logic Programming
Agent-Oriented Language, submitted.

5. FIPA. Communicative Act Library Specification, Technical Report XC00037H, Foundation
for Intelligent Physical Agents, 10 August 2001.

6. R. A. Kowalski, How to be Artificially Intelligent - the Logical Way, Draft, revised February
2004, Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

7. P. Mc Burney, R. M. Van Eijk, S. Parsons, L. Amgoud, A Dialogue Game Protocol for
Agent Purchase Negotiations, J. Autonomous Agents and Multi-Agent Systems Vol. 7 No. 3,
November 2003.


	The DALI language 
	The DALI Interpreter
	Case Studies



